Upscaling fluxes from tower to landscape: Overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover

نویسندگان

  • J. Kim
  • Q. Guo
  • D. D. Baldocchi
  • M. Y. Leclerc
  • L. Xu
  • H. P. Schmid
چکیده

In this paper, we describe the process of assessing tower footprint climatology, spatial variability of site vegetation density based on satellite image analysis, and sensor location bias in scaling up to 1 km 1 km patch. Three flat sites with different vegetation cover and surface heterogeneity were selected from AmeriFlux tower sites: the oak/grass site and the annual grassland site in a savannah ecosystem in northern California and a slash pine forest site in Florida, USA. The site vegetation density was expressed in terms of normalized difference vegetation index (NDVI) and crown closure (CC) by analyzing the high-resolution IKONOS satellite image. At each site, the spatial structure of vegetation density was characterized using semivariogram and window size analyses. Footprint maps were produced by a simple model based on the analytical solution of the Eulerian advection–diffusion equation. The resulting horizontal arrays of footprint functions were then superimposed with those of NDVI and CC. Annual sensor location biases for the oak/grass and the pine forest sites were <4% for both NDVI and CC, requiring no flux corrections in scaling from tower to landscape of 1 km. Although the annual grassland site displayed much larger location biases (28% for NDVI, 94% for CC), their temporal changes associated with averaging time showed a real potential to develop algorithms aimed at upscaling tower fluxes to the landscape in an effort to provide validation data for MODIS products. # 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upscaling CH4 Fluxes Using High-Resolution Imagery in Arctic Tundra Ecosystems

Arctic tundra ecosystems are a major source of methane (CH4), the variability of which is affected by local environmental and climatic factors, such as water table depth, microtopography, and the spatial heterogeneity of the vegetation communities present. There is a disconnect between the measurement scales for CH4 fluxes, which can be measured with chambers at one-meter resolution and eddy co...

متن کامل

A Survey of Landscape Metrics and Land-use/land-cover Structures on Urban Heat Islands Surface: A Case Study on Urmia City, Iran

Urbanization is developing unprecedentedly on a global scale. One of the chief repercussions of urbanization, caused by man-made alterations in land-use/land-cover (LULC), is the formation of urban heat islands. Albeit, differences among landscape structures and its accompanied effects on the environment are mostly neglected. Accordingly, the main objective of this study is to survey the variou...

متن کامل

Fractional Vegetation Cover Estimation In Urban Environments

Quality of life in urban environments is closely related to vegetation cover. The Urban growth and its related environmental problems, planners are forced to implement policies to improve the quality of urban environment. Thus, vegetation mapping for planning and managing urban is critical. Given the spectral complexity of the urban environment and the sparse vegetation in these areas, to gener...

متن کامل

Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

Most applications of land cover maps that have been derived from satellite data over the Arctic require higher thematic detail than available in current global maps. A range of application studies has been reviewed, including up-scaling of carbon fluxes and pools, permafrost feature mapping and transition monitoring. Early land cover mapping studies were driven by the demand to characterize wil...

متن کامل

Urban vegetation monitoring in Hong Kong using high resolution multispectral images

Very high resolution (VHR) satellite remote sensing systems are now capable of providing imagery with similar spatial detail to aerial photography, but with superior spectral information. This research investigates the hypothesis that it should be possible to use multispectral IKONOS images to quantify urban vegetation, obtaining similar accuracy to that achieved from false colour aerial photog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006